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Abstract—Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic
aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been
proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive
review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches
over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed
out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advan-
tages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and
probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space
varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian
approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spa-
tial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are pre-
sented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the cost-
performance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed
for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of
signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain
and multiresolution-domain methods.

I. INTRODUCTION the appearance of images. Speckle may severely diminish

Synthetic aperture radar (SAR) remote sensing [1] of-
fers a number of advantages over optical remote sens-
ing, mainly the all-day, all-weather acquisition capability.
However, the main drawback of SAR images is the presence
of speckle, a signal dependent granular noise, inherent of
all active coherent imaging systems, that visually degrades
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the performances of automated scene analysis and infor-
mation extraction techniques, as well as it may be harm-
ful in applications requiring multiple SAR observations,
like automatic multitemporal change detection. For these
reasons, a preliminary processing of real-valued detected
SAR images aimed at speckle reduction, or despeckling, is
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of crucial importance for a number of applications. Such
a preprocessing, however, should be carefully designed to
avoid spoiling useful information, such as local mean of
backscatter, point targets, linear features and textures.

A steadily increasing number of papers specific on
despeckling has appeared in the literature over the last
ten years, presumably because the new generation of sat-
ellite SAR systems has dramatically raised the attention
of researchers in signal processing towards this prob-
lem. The COSMO-SkyMed constellation—four satellites
launched by the Italian Space Agency (ASI) between 2007
and 2010—features X-band SAR with low revisit-time; as
a second generation mission, two additional satellites are
foreseen in 2014 and 2015. The twin-satellite constellation
TerraSAR-X/TanDem-X (2007/2010) launched by the Ger-
man Space Agency (DLR) and the upcoming Sentinel-1a/-
1b satellite constellation (2013/2015) from the European
Space Agency (ESA), which shall extend the EnviSat mis-
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sion, complete the European scenario of satellite SAR. Also,
the Canadian RADARSAT 3 mission is expected in a near
future, with 3 satellites operating at C-band, to be launched
in 2017. A thorough overview of past, present and future
missions can be found in [1].

The most recent advances in despeckling pursue the
technological objective of giving an extra value to the huge
amount of data that are routinely collected by current and
upcoming SAR systems mounted on orbiting platforms. In
fact, with the exception of applications related to produc-
tion of digital elevation models (DEMs) or interferometric
phase maps useful for studies of terrain deformation (land-
slides, subsidence, etc.), SAR data do not find the same full
utilization, as optical data do, by either users’ or scientists’
communities. As an example, the functional development
of efficient techniques for fusion between optical and SAR
data would constitute an enabling technology that would
allow a relevant number of new applications to bring



benefits both for data providers and for producers of soft-
ware applications. Unfortunately, speckle is the main
obstacle towards the development of an effective optical-
SAR fusion [2], together with the different acquisition
geometry of optical and SAR systems.

This article is intended as tutorial on despeckling, rather
than a simple review of despeckling methods. Therefore,
emphasis is given to speckle and reflectivity models that are
used for filtering. The review of methods that are not relying
on the multiplicative noise model is kept very concise, since
such methods have not encountered same progresses over
time as model-based methods have. With only very few
exceptions, despeckling methods specifically proposed for
ultrasound images are not reviewed here. In fact, notwith-
standing the similarity of the coherent imaging system, in
the presence of weak echoes from tissues the additive white
Gaussian noise (AWGN) introduced by the electronics
cannot be neglected and the noise model also includes an
AWGN term [3]. In SAR images, the AWGN term is always
negligible, compared to the signal-dependent term [4].

Despeckling methods specifically pertaining to polari-
metric SAR are not discussed in this tutorial. Readers inter-
ested to this topic are addressed to the seminal papers by
Novak and Burl [5], Lee et al. [6] and Touzi and Lopes [7], as
well as to more recent and developed contributions [8], [9].
Also despeckling methods designed to take advantage of
the availability of a temporal sequence of SAR images, like
[10], [11], are not addressed here. By default, speckle reduc-
tion is approached as mono-variate, even though a multivari-
ate speckle reduction [12], if applicable, may be preferred.

Only incoherent processing, that is, processing of SAR
images in either power, referred to as intensity, or amplitude
formats is dealt with. In fact, coherent processing of data in
complex format does not increase the signal-to-noise ratio
(SNR), but only the coherence [13] of the interferogram and
thus it is used in SAR interferometry [14]. The noisy phase
of the complex interferogram may be filtered before it is
unwrapped [15], [16], but in many cases the regularization
is directly performed by the unwrapping algorithm [17].
Whenever two real valued detected SAR images of the same
scene are available, the temporal correlation of speckle con-
veys information on the coherence of the interferogram

Aze/¢2

FIGURE 1. Scattering model explaining fully developed speckle.

that would be calculated from complex data [18]. Thus,
speckle is not only noise but in some sense has an informa-
tion content, even if difficult to exploit.

Excellent reviews of despeckling methods with high
tutorial value have been written by Lee et al. [19] and Touzi
[20]. Our goal is to update the presentation of methods to
changing times, especially towards recently established
concepts of multiresolution processing. A brief perspective
on upcoming promising approaches to despeckling in par-
ticular, and to information extraction from SAR images in
general, is also included in this survey.

The organization of contents is the following. After a lei-
surely paced section on fundamentals of reflectivity, speckle
and imaging system modeling, the problem is addressed
and developed under a statistical signal processing perspec-
tive, as in [20]. Emphasis is given to Bayesian estimation in
either space or scale-space domains. The main features of
the latter are concisely surveyed. A comprehensive critical
review of the most relevant speckle filters, beginning with
the pioneering Lee filter [21], spans over thirty years and
highlights trends and fashions that have been pursued and
developed over time or quickly abandoned. The renewed
interest of researchers towards despeckling occurred with
the introduction of multiresolution analysis, when spatial
domain methods had reached a degree of sophistication,
together with a saturation of performances, that demanded
a cross-fertilization from other fields of signal processing.
A variety of wavelet-based, or more generally scale-space,
despeckling methods is contextualized and discussed.
Advantages of such methods over spatial domain methods
is pointed out. Promising approaches like nonlocal filtering
and total variation regularization are described.

The second part of the article contains a more articulated
review of a few selected methods, some of them recently
proposed by the authors, that are presently indicated as
highly performing [22] in a comparative assessment carried
out on image specimens produced by a SAR simulator [23].
The most established and widely used statistical indexes to
assess the quality of despeckling, both with a reference, like
in the case of the SAR simulator, or of synthetically speck-
led optical images, and blind, i.e., without a reference, are
surveyed. A brief section compares quantitative results of
the selected methods and draws some considerations on
the specific features of the different methods, which exhibit
different behaviors, and on the suitability and limitations
of the quality indexes. The trade off between performances
and computational cost is analyzed. The influence of
speckle correlation on the despeckling accuracy of single-
look images and a viable strategy for its preliminary reduc-
tion, without affecting the subsequent despeckling stages,
is described. Eventually, a concluding section remarks the
key points of the analysis and gives hints that may help
researchers develop new and better despeckling filters, or
more simply may help users choose the most suitable filter
among those that are presently available, also as source or
executable codes to download.
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Under a statistical signal processing perspective, despeck-
ling filters aim at estimating the noise-free radar reflectiv-
ity from the observed noisy SAR image [20]. In order to
describe the estimation methods that have been developed
for the despeckling problem, we need firstly to introduce
models for speckle, SAR system and reflectivity.

A. SPECKLE MIODELS

SAR is an active acquisition instrument that produces a
radiation and captures the signals backscattered from a
small area of the imaged scene (resolution cell). The received
signal, as output from the in-phase and quadrature chan-
nels, is complex. If we assume that the resolution cell con-
tains several scatterers and that no one yields a reflected
signal much stronger than the others (distributed target),
then the received signal can be viewed as the incoherent
sum of several backscattered waves, i.e., Ae/” = A e/, as
shown in Fig. 1. The amplitudes A; and phases ¢; are the
result of several factors, including propagation attenuation,
scattering of the illuminated targets, antenna directivity.
Each individual component, however, can not be resolved
within a resolution cell. A first approach to modeling the
received signal is solving the Maxwell’s equations according
to the propagation geometry and scattering medium [24],
[25]. By using this approach, the way each propagation path
interferes gives us basic information about the observed
scene. On the other hand, if we consider that the phases
of each path are highly different and that they may sum
in a constructive or destructive way, then the amplitude of
the received signal varies randomly. So, even if the under-
lying reflectivity field is uniform, it appears as affected
by a “granular” noise after the imaging system. For visual
inspection and for specific applications that involve visual
information retrieval, such as mapping and segmentation,
the highly varying nature of the signal may be considered as
a disturbance and is commonly denoted as “speckle”.

The phases ¢; are highly varying (since the wavelength
is much shorter than the resolution cell size and scatterers
distances) and may be considered as uniformly distributed
in (-, ) as well as independent of A;. If the number of
scatterers is sufficiently high, the central limit theorem
applies [26] and the resulting signal Ae’” =z, +jz, can be
seen as a complex signal whose real and imaginary parts
(in-phase and quadrature components) are independent
and identically distributed zero-mean Gaussian variables
with variance ¢/2. When this applies speckle is termed as
fully developed [27]. The joint probability density function
(pdf) is given by

zlz+z%

pu,zz (Z], ZZ) = %0‘6 Ty (1)

whereas the amplitude A is distributed as a Rayleigh pdf,
thatis
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and the power or intensity I = A” is distributed according to
an exponential pdf, that is

pi(l) =Lew 3)

so that the mean of the intensity is equal to ¢. It can be
shown [4], [28] that the intensity measurement carries
information about the average backscattering coefficient
(for distributed targets) related to the resolution cell.
Hence, for specific applications, the parameter o is the
actual information we would like to extract from a single
channel SAR system. This can be considered as the radar
cross section (RCS) of the observed resolution cell. The
received signal pdf can be reformulated into

1 1L
piis(l0) = Le s (@)
or
I =ou, (5)

where u is exponentially distributed, that is,
pu(u) =e™. (6)

Eq. (5) is termed the multiplicative model of speckle.

If only one image (realization of the stochastic process)
is available, the best estimate of the scene average reflectiv-
ity is just the pixel-by-pixel intensity. This will be a quite
noisy estimate because of the previously described con-
structive/destructive combination effects. From (3), it fol-
lows that the variance of the intensity in each pixel is 67,
so that brighter pixels will be affected by stronger distur-
bances than darker ones. A way to improve the estimation
of ¢ is to average L independent intensity values related to
the same position. This processing, named “multilooking”,
maintains the mean intensity ¢ but reduces the estimator
variance to ¢°/L. Independent “looks” of a target resolu-
tion cell can be obtained either by appropriate processing
in the Doppler domain (splitting the Doppler bandwidth
within the imaging system that compensates the quadratic
phase variation created by the platform movement) or by
averaging L spatial observations. In both cases, the cost to
be paid for estimation accuracy improvement is spatial res-
olution loss by a factor L. If the hypothesis of independent
intensity measurements holds (in the case of correlated
data the assumption fails), the L-look averaged intensity
I, is I'-distributed, that is

el o) = ik Sie® @)

whereas the relative amplitude image A. = V1 has a square
root I' distribution [4]. For visual inspection and for auto-
matic interpretation tasks, the use of amplitude images is
preferable, thanks to their reduced dynamic range with
respect to intensity images, which is accompanied by an
increment in SNR.



The model described above is valid under the assump-
tion that the imaged scene is characterized by distributed
scatterers. In the presence of a scatterer much stronger than
the others (point target), the received signal pdf becomes a
Rice distribution and the model above described does not
apply. In this case, the received signal power is related to
the single target reflection coefficient and, for the purpose
of speckle removal, point targets are treated separately
from distributed targets.

B. SAR SYSTEM MODEL

In the above analysis, the effect of the imaging system has
not been taken into consideration. Indeed, the SAR system
can achieve a spatial resolution of the order of the antenna
size only if proper processing, referred to as focusing, is
applied. The energy of the transmitted frequency modu-
lated (FM) chirp pulse is spread into the range-Doppler
domain and such a processing consists of matched filtering
along the range and along iso-Doppler curves and is needed
to compact energy back in the spatial domain [28]. From
this point of view, a SAR system can be seen as an encoding
transfer function h,(r) followed by a compression transfer
function h.(r) [4], [29]. If S(r) denotes the complex reflec-
tivity, the observed single look complex (SLC) signal after
the imaging processor is

8e(r) =[C-S(x) * he(r) +n(r)]  he(r), 8)

where the constant C absorbs propagation information
(e.g., loss and antenna gains) and the term 7n(r) accounts
for thermal noise at the receiver. For sufficiently high sig-
nal-to-noise ratios, the noise term can be neglected and the
received complex signal becomes

gc(r) =C-S(x) * he(r) * he(r) =C-S(r) = h(x). )

For well-designed SAR, the impulse response h (r) is pulse-
like and represents the point spread function (PSF) of the
system that, in a first approximation, can be assumed as
independent of the position. Again, the intensity | g(r) [
is proportional to the average backscattering coefficient
of the cell and is the information we would like to achieve
from the observation. An accurate description of the model
in (9) and of the statistical properties of the acquired SAR
image is given in [29].

C. REFLECTIVITY MODELS

The speckle formation model yields a pixelwise descrip-
tion of the observed signal. For many applications,
including despeckling, more refined models are needed.
Such models describe the observed received signal at a
coarser scale than the single pixel one and try to intercept
information about the underlying texture of the imaged
scene and its correlation. It is then crucial to consider also
the average intensity, i.e., RCS ¢, which is considered the
information to be retrieved, as a random process. Unfor-

tunately, the RCS is not directly observable and its prop-
erties must be inferred from the intensity values over an
area in which the texture is homogeneous. In this sense,
RCS modeling can be seen as an inverse problem whose
solution is made difficult by the fact that homogeneity
can be stated only if a ground truth is available, but often
this is not the case. Furthermore, since the problem can
be formulated only in a statistical sense, the dimension
of the homogeneous area becomes crucial: it should be
as large as possible in order to reliably apply statistical
hypothesis testing methods, but this contrasts with the
natural scenes structure that is often characterized by
the presence of limited size homogeneous areas (such as
fields, woods, orchards, forests, trees, man-made areas)
and mixing the information of different textures makes
the hypothesis tests to fail.

The starting point for solving this inverse problem is
the statistics of the observed intensity over a homogeneous
area. The pdf of the intensity signal can be written as

p(1) = [ pUilo)p(0)do, (10)
where p(I|0o) is the single pixel speckle model, given by
(4) and (7) for the 1-look and L-look cases, respectively. Eq.
(10) is referred to as the product model of the observed inten-
sity [20]. One of the assumptions that must be made to state
the validity of the model (10) is that the RCS fluctuation
scale is larger than that of speckle.

Even though several pdfs have been proposed for the
intensity I (e.g., Weibull, log-normal), one of the most used
pdfis the K distribution. The K distribution is a paramet-
ric pdf that, with a suitable choice of its parameters, well
fits observed intensity histograms. It has also the advantage
that a closed form of the RCS pdf, i.e., p(¢), exists such that
the product model in (10) yields a K distribution. In fact, if
the RCS pdfis a I distribution, that is

V=l yo
7

p(0) =) Faye % (1

where v is an order parameter and ¢ is the mean, then the
pdf of the observed intensity signal is given by

VLI

where K, () is the modified Bessel function of order n
and T is the mean of intensity. Fitting the parameters of
the pdf to the observed signal allows information on the
RCS to be retrieved.

The model in (12) yields a pixelwise statistical descrip-
tion of the observed intensity values. A complete description
of the scene, however, needs the inclusion of the autocor-
relation function into the model. If such a function is esti-
mated from the observed data, then the exact autocorrela-
tion function of the RCS is quite difficult to achieve and
usually it does not exist in a closed form [4].
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From the previous discussion, it emerges that model-
ing the received SAR signal should take into account
several physical, statistical and engineering aspects of
the overall system. Such a complexity makes the pro-
cess of extracting average backscatter information from
the observed signal a nontrivial task. From a signal
processing perspective, a first step towards finding effi-
cient solutions is stating the acquisition model in the
simplest form as possible. In [20], several multiplicative
models of speckle are described and classified accord-
ing to the autocorrelations of the imaged scene and of
the noise term.

In the following of this section, models of the noisy sig-
nal in both spatial and transformed domains are reviewed,
Bayesian estimation principles are briefly recalled and the
wavelet transform, in both decimated and undecimated
versions, is introduced as a transformation suitable for
despeckling. Eventually, the modeling of pdfs for Bayesian
estimation in the wavelet domain is discussed and shown
to be crucial for performances.

A. MODELS OF NOISY SIGNAL
Perhaps, the most used model in the literature on despeck-
ling is the following:

(13)

where f is a possibly autocorrelated random process
and represents the noise-free reflectivity; u is a pos-
sibly autocorrelated stationary random process, inde-
pendent of f, and represents the speckle fading term; g
is the observed noisy image. All the quantities in (13)
may refer to either intensity or amplitude as well as to
single-look or multilook images, whose pdfs have been
described previously.

The variable u may be assumed as spatially correlated [30].
Recently, it has been shown [31] that a preprocessing step that
makes speckle uncorrelated, that is “whitens” the complex
signal, allows despeckling algorithms
designed for uncorrelated speckle to be
successfully applied also when speckle
is (auto)correlated. Therefore, in the
following we shall analyze only algo-
rithms working under the hypothesis of
uncorrelated speckle.

The nonlinear nature of the rela-
tionship between observed
noise-free signals makes the filtering
procedure a nontrivial task. For this

g =fu,

and

g = fu —

g=f+v — w >

where v = (u—1)f accounts for speckle disturbance in an
equivalent additive model, in which v, dependingon f, is a
signal-dependent noise process.

A second way that allows the multiplicative noise to be
transformed into an additive one is using a homomorphic
transformation [32]. It consists of taking the logarithm of
the observed data, so that we have

log g =log f+logu

g =f+u, (15)
where ¢, f" and u' denote the logarithm of the quan-
tities in (13). Unlike the case in (14), here the noise
component u’ is a signal-independent additive noise.
However, this operation may introduce a bias into the
denoised image, since an unbiased estimation in the log-
domain is mapped onto a biased estimation in the spa-
tial domain [33]; in math form, if u exhibits E[u] =1,
E[w'] = E[log(u)] # log(E[u]) =log(1) = 0.

Over the last two decades, approaches to image denois-
ing that perform estimation in a transformed domain have
been proposed. Transforms derived from multiresolu-
tion signal analysis [34], [35], such as the discrete wavelet
transform (DWT), are the most popular in this context.
Despeckling in a transform domain is carried out by taking
the direct transform of the observed signal, by estimating
the speckle-free coefficients and by reconstructing the fil-
tered image through the inverse transform applied to the
despeckled coefficients.

B. BAYESIAN ESTIMATION CONCEPTS
From the previous discussion about the most widely used
signal models for despeckling, it can be seen that the multi-
plicative model is often manipulated in order to obtain an
additive one. Fig. 2 summarizes the various versions of the
additive models.

The block “Estimator” attempts to achieve a speckle-
free representation of the signal in a specific domain; for

Estimator
(a)
Estimator
(b)
Estimator w

(c)

g=f+v — —>f

Y

log > exp

reason, some manipulations have

been introduced to make the observa- g =i log

Estimator exp —>f

tion model simpler. Several authors
adopt the following model, derived
from (13):

(d)

FIGURE 2. Additive models commonly used in despeckling algorithms: (a) signal-dependent

in spatial domain, (b) signal-independent in spatial domain, (c) signal-dependent in trans-
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example, in the transform domain, as in Fig. 2-(c), or in the
homomorphictransform domain, as in Fig. 2-(d), in which
the noise-free informative signal is contaminated with
additive signal-dependent or signal-independent noise,
respectively.

The basics of Bayesian estimation are now reviewed for
the simplest case, shown in Fig. 2-(a), even though analo-
gous derivations hold for all the other cases in Fig. 2.

A Bayesian estimator [36] tries to achieve an estimate
f of f—which is assumed to be a random process—by
having some prior information about the signal to be esti-
mated, summarized in pr(f), the a-priori pdf of f. Different
Bayesian estimators can be defined according to the choice
of the Bayesian “risk”, i.e., the function of the estimation
error € =f —f we would like to minimize.

The minimum mean square error (MMSE) estimator

minimizes the quantity E[e’] =E[(f—/)?]. It is well-
known [36] that the solution is given by
P = Erielf| gl (16)

which is the expectation of the noise-free signal conditional
to the noisy observation. By exploiting the Bayes rule and
the additive signal-dependent model g = f + v, we obtain

P95 = [ foria(f|g)df

pair (81 N)pr(f)
o K=

[ v-Der(Ndf

- . (17)
[ ov(g=Ppr(Hdf

Analysis Stage

Synthesis Stage

The estimate in (17) would require the knowledge of the
nonstationary joint pdfs of any orders.

A simpler solution requiring only second order moments
is the linear MMSE (LMMSE) estimator, in which the MMSE
solution is sought by constraining the estimator to be a lin-
ear combination of the observed variables. The LMMSE
estimator is given by

';(LMMSE

=E[f]+CpCy (8 —EI8]), (18)

in which Cg, is the covariance matrix between f and g and
Cg, is the autocovariance matrix of g. Prior knowledge is
now embedded in the second order statistics of the noise-
free and noisy signals, which can be derived by exploiting
the additive model.

The maximum a-posteriori probability (MAP) estima-
tor minimizes the quantity E[C(€)], where C(¢) =1 for
|e|>6 and C(€) =0 elsewhere. The solution, when ¢ is
small, is given by

JYA" = arg max pric|f| 8] (19)
Again, by exploiting the Bayes rule and the additive model,
we have

J° = argmax pair (] ) pr (/)

= arg max pv(8=fpe(f) (20)
or, equivalently,
o = arg max
[logpv(g )
+ogpe(f)] (21)

Analysis Stage

Synthesis Stage

Egs. (17), (18) and (20) reveal
that all solutions, besides to
the a-priori information on f,
require also knowledge of the
pdf of the noise component v.

C. WAVELET TRANSFORMS
A Bayesian estimation carried
out in the spatial domain leads

to a solution that adaptively
depends on local statistics, i.e.,

Ho(2) Hy(z2) F H| G4(2?)

is a space-adaptive estimator. A

(b)

FIGURE 3. (a) Two-level nonredundant wavelet decomposition/reconstruction and (b) the equiva-
lent scheme obtained applying the noble identities. The undecimated wavelet transform is obtained
by eliminating the downsamplers and upsamplers contained in the shaded box.

Bayesian estimation carried out
in the multiresolution, or scale-
space, domain may have the
extra value of leading to a scale-
space adaptive estimator, that
is, an estimator adaptive not
only in space but also in scale.
Such an extra value is not auto-
matic and requires careful pdf
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modeling in the transformed domain, otherwise the spatial
adaptivity may get lost in favor of the scale adaptivity. 1

The wavelet analysis provides a multiresolution rep- 0.9
resentation of continuous and discrete-time signals and 0.8
images [35]. For discrete-time signals, the classical maxi- 07
mally decimated wavelet decomposition is implemented 9 0
by filtering the input signal with a low pass filter Ho(z) and s
a high pass filter Hi (z) and downsampling each output by g€ 05
a factor two. The synthesis of the signal is obtained with a S 04
scheme symmetrical to that of the analysis stage, i.e., by 0.3
upsampling the coefficients of the decomposition and by 0.2
low pass and high pass filtering. Analysis and synthesis fil- 01
ters are designed in order to obtain the perfect reconstruc-
tion of the signal and by using different constraints (e.g., OO 005 01 015 0.2 0.25 0.3 035 04 045 05
orthogonal or biorthogonal decomposition, linear phase Normalized Frequency

filters). Applying the same decomposition to the low pass
channel output yields a two-level wavelet transform: such  piGURE 4. Equivalent filters frequency responses obtained from
a scheme can be iterated in a dyadic fashion to generate a 8-tap Daubechies orthogonal wavelets [34].

multilevel decomposition. The analysis and synthesis stages
of a two-level decomposition are depicted in Fig. 3-(a).

In several image processing applications, e.g., compres-
sion, the DWT is particularly appealing since it compacts
energy in few coefficients. However, for most of the tasks HH LH HH
concerning images, the use of an undecimated discrete
wavelet transform (UDWT) is more appropriate thanks HL LL HL
to the shift-invariance property. UDWT is also referred n
to as stationary WT (SWT) [37], [38], as opposite to Mal- -7 0 Wy
lat’s octave (dyadic) wavelet decomposition DWT [35],
which is maximally, or critically, decimated. The rationale
for working in the UDWT domain is that in DWT, when HH LH HH
coefficients are changed, e.g., thresholded or shrunk,
the constructive aliasing terms between two adjacent sub-
bands are no longer canceled during the synthesis stage, (a)
thereby resulting in the onset of structured artifacts [39].

As to the construction of the UDWT, it can be shown Lowpass
that if we omit the downsamplers from the analysis stage = Subband
and the upsamplers from the synthesis stage, then the
perfect reconstruction property can still be achieved. The
relative scheme for a two-level decomposition is depicted
in Fig. 3-(b). In the block diagram, by applying the noble x(n) Bandpass
identities [40], the downsamplers (upsamplers) have been D Directional
shifted towards the output (input) of the analysis (synthe- Subbands
sis) stage. Eliminating these elements yields the UDWT. As
a consequence, the coefficients in the transform domain
can be obtained by filtering the original signal by means of
the following equivalent transfer functions:

—T

Bandpass
Directional
Subbands

j—1
Hlyi(2) = [T Ho(@"),

" (b)
Hiyi(2) =| [T Ho (sz)] Hi(2), 22

m=0 FIGURE 5. Frequency splitting from a single-level separable DWT (a),

where the subscripts I and h refer to the approximation (low obtained by low pass (L) and high pass (H) filtering along the rows
pass) and detail or wavelet (bandpass and high pass) sig- and the columns (LL, HL, LH, and HH denote all possible combina-
nals, whereas j denotes the level of the decomposition. An tion); in (b), the splitting obtained from the nonsubsampled Laplacian
example of the equivalent filters frequency responses, rela- pyramid decomposition (on the left) and the nonsubsampled direc-
tive to a four level decomposition, is shown in Fig. 4. tional filter banks (on the right) composing the contourlet transform.
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Let Al(n) and Wi(n) denote the approximation and
wavelet coefficients, respectively, of the signal x at the jth
level of the decomposition, whereas n is the spatial index.
Since the wavelet transform is linear, from equation (14)
we have

Al(n) = A} (n) +Al(n)
Wi (n) = Wj(n) + Wi(n).

(23)
(24)

Usually, only the wavelet coefficients (24) are processed
for despeckling; the baseband approximation is left
unchanged.

The wavelet transform is usually implemented for
images by using separable filtering along the columns and
the rows of the image. The effect of this processing is the
extraction, in each subband, of a rectangular region of the
frequency plane which corresponds, in the spatial domain,
to the extraction of horizontal and vertical details with dif-
ferent degrees of resolution. The frequency plane splitting
relative to a single level decomposition is given in Fig. 5-(a).
However, extracting directional information has been dem-
onstrated to be useful in several image processing tasks.

Recently, multiresolution transforms embedding direc-
tional information, such as contourlets [41], curvelets [42],
[43], and many others, have been successfully applied to
denoising in general and despeckling in particular. The
nonsubsampled contourlet transform is a combination
of a nonsubsampled Laplacian pyramid (NLP) decom-
position and of nonsubsampled directional filter banks
(NDFB). The relative frequency splitting is depicted in
Fig. 5-(b). As in the case of the UDWT, also the coeffi-
cients of the nonsubsampled contourlet transform can
be achieved by means of linear time-invariant (LTI) sys-
tems directly applied to the input, which allows statistical
parameters to be easily computed. Using directional infor-
mation is effective in terms of despeckling performance
[44], even though a higher computational cost must be
paid due to the need of a nonseparable implementation.

By assuming that the transform is linear, the addi-
tive models in (14) and (15) can be easily generalized to
the transformed domain. Specifically, for the formulation
given in (14), if W, denotes the transform operator applied
to the signal x, we have

We =W+ W,. (25)
In an analogous way, by applying both the homomorphic
filtering concept and the linear transform, the observation
model in (15) becomes

Wy =Wy + W,. (26)

The Bayesian estimator explicitly derived for the addi-
tive model in (14), can also be applied to the additive
models defined in (15), (25), and (26) by simply chang-
ing the type of variables and prior knowledge, that is: 1)
the prior pdf of the signal of interest (related to the reflec-

tivity) and represented by f, f, Wy and Wy in equations
(14), (15), (25), and (26), in that order; 2) the pdf of the
additive noise component, represented by v,u’, W, and
Wy, in the same equations.

D. PDF MODELING

Bayesian estimation relies on an accurate probabilistic
modeling of the signals under concern. However, the choice
of pdfs suitable for modeling the data of interest is not a
simple task. In Section II, we have described some of the
most used pdfs for the speckle and reflectivity processes.
While the former derive from the image formation mecha-
nism and may be considered as valid in most of the images
where the fully developed speckle model holds, the latter
highly depend on the imaged scene. We highlight again
that different types of landscapes and land covers induce
different distributions on the reflectivity signal. Models of
the underlying land cover may help to derive a pdf of the
imaged signal, but this knowledge may not be available for
despeckling or may be insufficient. As to the modeling of
signals in the homomorphic domain, an exact derivation
of the log-intensity and of the log-amplitude of the fading
variable is available [33], whereas the characterization of
the backscattering coefficient still remains crucial.

The modeling of the involved variables may be simpler
and more robust if one works in a multiresolution, or scale-
space, domain, instead than in the spatial domain. In fact,
it is well-known that the pdf of wavelet coefficients can
be approximated by several unimodal distributions—as
noticed by Mallat in his seminal paper [35], where a gener-
alized Gaussian was used—that can be described by a small
number of parameters. They can be adaptively estimated
from the coefficients of the observed image, independently
of the distribution of the image that is transformed.

Validating a hypothetical pdf model is, in general, quite
hard. In some works, wavelet coefficients pdfs are validated
“globally” from the observation of the histogram of the
amplitude of the coefficients in a whole subband. However,
since the signal is nonstationary, spatially adaptive meth-
ods should be used instead. A single observation, or realiza-
tion, of the scene is usually available; thus, one may only
conjecture that wavelet coefficients “locally” follow a given
distribution (only few samples are available to perform the
validation of the local model) whose parameters locally
vary. A way to check the validity of the pdf model is experi-
mentally observing the performances of despeckling filters
on either true SAR or synthetically speckled images. As a
general rule of thumb, the higher the number of param-
eters, or degrees of freedom, of the pdf, the better its ability
to model the true wavelet coefficients pdf within a whole
subband, but the lower their estimation accuracy from the
few samples available in a local window within a subband
and the higher the complexity of the resulting estimator.
Therefore, the use of reasonably simple distributions may
be expected to yield better results than more complex ones,
that is, overfitting is not rewarding.
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Another fact that should be considered when a pdf
model is chosen is the computational cost. Some combina-
tions of estimation criterion and pdf model yield a Bayesian
estimator that can be achieved only numerically [45]. This
fact may prevent from using the filter when huge amounts
of data need to be processed. In this case, a closed form
solution may be preferred, even though a possible loss of
performances may be experienced.

IV. A REVIEW OF DESPECKLING METHODS
A multitude of despeckling filters can be obtained by
combining the different domains of estimation (spa-

tial, homomorphic, wavelet, homomorphic-wavelet),
the estimation criteria, e.g.,, MMSE, LMMSE, minimum
mean absolute error (MMAE), MAP or non-Bayesian,
and the pdf models. A nonexhaustive review and clas-
sification of methods is attempted in the following of
this section.

A. BAYESIAN METHODS IN SPATIAL DOMAIN

Early works on despeckling were deployed in the spatial
domain and were obtained by making assumptions on the
statistical properties of reflectivity and speckle, e.g., pdf
and autocorrelation function.

FIGURE 6. Examples of the application of Bayesian estimators in the UDWT domain: (a) original 5-look ERS-2 image and filtered versions
obtained with, (b) Lee refined filter [49], (c) refined I"-MAP filter [56], and (d) Rational Laplacian Pyramid filter [59].
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Lee Filter—The local-statistics filter, introduced by
Jong-Sen Lee in 1980, is reportedly the first model-based
despeckling filter. The original paper [21] contained solu-
tions for both additive signal-independent noise and
speckle noise. The latter solution was thoroughly devel-
oped in [46] and reviewed in [47] together with the sigma
filter. An LMMSE solution was derived by linearizing the
multiplicative noise model around the mean of the noisy
signal. In this way, the author devised an approximate but
effective solution which is identical to the exact solution,
apart from the term (1 +07) ~, in which o7 is the variance
of the multiplicative noise u. The contribution of this term
can be practically neglected for multi-look images, in which
on < 1[19], [48].

Lee Refined Filter—This filter [49] was designed to over-
come the drawback of edge boundaries that are left noisy by
Lee filter. To improve filtering, once an edge is detected in a
7 X 7 sliding window, the algorithm uses the local gradient
to estimate its orientation. Eight edge-directed non-square
windows are allowed. The estimation of the local mean and
of the local variance are performed within the local window
that better fits the edge orientation. If no edge is detected,
the estimates are computed on the whole 7 X 7 window.
Filtering results are quite impressive, particularly on edges
and high contrast areas. Some artifacts may occur when the
filter processes textured areas that result to be overly seg-
mented. Another limitation is that the filter works with a
window of fixed size 7 X 7: textures characterized by a high
spatial variation and thin linear features may be altered. An
ERS-2 image of Florence is shown in Fig. 6-(a); processing of
refined Lee filtering in Fig. 6-(b).

Frost Filter—In Frost filter [50], starting from a model
of the coherent imaging system, a parametric approxima-
tion of the autocorrelation function of reflectivity is derived
from local statistics. Such a function is used to devise an
LMMSE solution for the noise-free reflectivity itself. The fil-
tered value is a linear combination of pixel values within
the local window with a Gaussian weighting function that
depends on the local coefficient of variation of the noisy
image g namely C,, defined as the ratio of local standard
deviation to local mean. Despite its large popularity in the
image processing community, Frost filter had no develop-
ments over time, either by the authors or by others, apart
from the heterogeneity adjustment common to all spatial
Bayesian filters [51], which will be reviewed at the end of
this subsection.

Kuan Filters—Kuan’s filter [52] exactly implements the
LMMSE solution (18) starting from a signal model that fea-
tures nonstationary mean, nonstationary variance and thus
a diagonal covariance matrix in (18). The resulting LMMSE
solution is referred to as local LMMSE (LLMMSE) to indi-
cate that it contains only local first order statistics, mean
and variance, that are easily calculated in a sliding win-
dow. Accordingly, the optimum estimate of reflectivity, ]A‘,
is given as a combination of the unfiltered noisy pixel value
g and of its local average g, approximating the local mean,

with weights nonnegative and summing to one. The center
pixel is more or less weighted depending on its local signal
to noise ratio (SNR). Besides despeckling, also restoration
for the effects of the imaging system can be carried out [53].
The price is a considerable increment in the computational
complexity of the procedure.

MAP Filters—The prototype of MAP filters in spatial
domain is the I"-MAP filter, introduced in [54] and thor-
oughly analyzed in [55]. It assumes that both the radar
reflectivity and the speckle noise follow a Gamma distri-
bution and solves the MAP equation (21) accordingly. It is
designed to smooth out noise while retaining edges or shape
features in the image. Different filter sizes greatly affect the
quality of processed images. If the filter is too small, the
noise filtering algorithm is not effective. If the filter is too
large, subtle details of the image will be lost in the filtering
process. A 7 X 7 filter usually gives the best tradeoff.

A refined version of the I'-MAP filter that features
an improved geometrical adaptivity, analogously to
Lee refined filter, was proposed in [56]. The visual result
appears in Fig. 6-(c). This achievement marks the beginning
of a certain performance saturation in spatial despeckling
methods, although highly sophisticated Bayesian methods
in space domain, featuring MAP estimation associated to,
e.g., Gauss-Markov and Gibbs random fields for prior mod-
eling have been introduced later [57] and are still used [58].

Despeckling Filters and SAR Heterogeneity—The
filters described in this subsection can be adjusted to the
heterogeneity of SAR images, as suggested in [51]. The
rationale is that in true SAR images at least three statisti-
cal classes can be recognized: homogeneous, textured, and
strong, or persistent, scatterer. The first class is character-
ized by a spatially constant reflectivity and in this case the
best estimator is a plain average of intensity pixel values in
a neighborhood. Pixel belonging to the third class should
be detected and left unprocessed, as they are intrinsi-
cally noise-free and are used for calibration, registration,
etc. The intermediate class may be processed through the
desired filter, e.g., Lee, Frost and Kuan filters. The result-
ing filters are known in the literature as enhanced Lee,
Frost and Kuan filters [51]. The I"-MAP filters was origi-
nally defined in enhanced version [54]. The three classes
are found by thresholding C,. The two thresholds, namely
Cmin and Cmax are empirically set equal to 0., the standard
deviation of speckle, and v/3 g, [51].

B. BAYESIAN METHODS IN TRANSFORM DOMAIN
Apart from a few methods that employ multiresolution
concepts without a formal multiresolution analysis, like
Meer's filter and especially the filter based on the Laplacian
pyramid, all filters reviewed in this subsection exploit the
discrete wavelet transform, either decimated or not.

Meer’s Filter—Meer’s filter [60] considers a local neigh-
borhood constituted by a set of three concentric sliding
windows, 7 X 7, 5 X 5, and 3 X 3. A homogeneity index
is given by C,;, computed over each of the windows. The
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spatial average on the largest window satisfying a homoge-
neity criterion, defined by thresholding its Cg, is given as
output. If such a window does not exist, Kuan’s LLMMSE
estimate on the innermost 3 X 3 window is assigned to the
center pixel. This filter is effective in preserving point tar-
gets, linear features and edges, thanks to its
capability to shrink its window size. Per-
formances on point targets and linear fea-
tures are slightly better than those of Lee’s
refined filter which, however, is superior on
linear edges.

RLP Filter—The rational Laplacian pyr-
amid (RLP) filter [59] is an evolution for
speckle filtering of the denoising method
based on the enhanced Laplacian pyramid
[61]. The latter is commonly used for spa-
tially scalable layered video coding as well
as for lossless and near lossless compres-
sion of still images by exploiting quantization noise feed-
back [62], [63].

RLP differs from LP because its passband layers are
obtained by taking the ratio pixel by pixel between one
level of the Gaussian pyramid and the interpolated version
of the lower resolution upper level. While the baseband
icon, corresponding to the top of the Gaussian pyramid,
may be left unprocessed because of its high SNR obtained
through cascaded low pass filtering and decimation stages,
analogously to multi-looking, the bandpass levels of RLP
are processed by means of Kuan's filter [52]. The despeck-
led image is synthesized from the denoised RLP. This mul-
tiscale LLMMSE filter outperforms its spatial counterpart
thanks to multiresolution processing. The result of RLP fil-
tering can be watched in Fig. 6-(d).

Homomorphic Filtering in Wavelet Domain—TFilter-
ing in the wavelet-homomorphic domain (see Fig. 2-(d))
has been extensively used during the last twenty years and
potentially superior performances over conventional spa-
tial filters have been recognized [64], [65]. In fact, each
wavelet subband is associated to a speckle contribution that
may be exactly measured [66] and filtered out. Thus, spa-
tially adaptive filtering become also scale-adaptive.

Classical hard- and soft-thresholding methods [67]
were applied in [68]. Thresholding based on nonlinear
functions (sigmoid functions), adapted for each subband,
has been used in [69]. In [70], MMSE estimation has been
used associated to a combination of generalized Gaussian
(GG)/Gaussian pdfs for the reflectivity and for the noise
components, respectively. In [71], MMSE estimation have
been used after modeling wavelet coefficients by means of
Gaussian mixtures and Markov random fields to charac-
terize their spatial and interscale dependency. In [72], the
MAP criterion has been used associated to a-stable dis-
tributions for the prior of the signal and to a log-normal
pdf for the noise. In [73], MAP estimation is applied based
on normal inverse Gaussian distributions. In [74], MMAE
estimation has been used associated to a Cauchy prior for
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the reflectivity signal and to a Gaussian pdf for the noise;
the previous method has been extended to the MAP crite-
rion in [75]. In [76], MAP estimation is used associated to
a heavy-tailed Rayleigh prior for the signal and to Gamma
or Nagakami models (for images in intensity or amplitude
format, respectively) for the noise.

Non-Homomorphic Filtering in Wave-
let Domain—Nonhomomorphic wavelet-
domain despeckling (see Fig. 2-(c)) has been
considered less frequently in the literature.
Even though the absence of the bias due to
the nonlinear mapping of the logarithm is an
advantage, the estimation of the parameters
of the signal and noise pdfs becomes more
complex. In fact, in the equivalent additive-
noise model for the non-homomorphic case,
thenoisetermissignal-dependentand, there-
fore, its parameters are much more difficult to
be estimated.

In the seminal paper by Foucher et al. [77], undeci-
mated wavelet was firstly used for despeckling. Estima-
tion is based on the MAP criterion and the Pearson system
of distributions. In [78], the LMMSE estimator, optimal
under the Gaussianity assumption, has been presented.
In [79], the LMMSE estimator with mixtures of Gaussian
pdfs is enforced by the use of the ratio edge detector [80] to
improve despeckling of contours. In [81], MAP estimation
isused along with the assumption of normal inverse Gauss-
ian distributions for the wavelet coefficients. MAP estima-
tion associated to locally varying generalized Gaussian
(GG) distributions has been used in [82]. In [83] a segmen-
tation-based MAP despeckling with GG priors is achieved.
The method in [82] has been extended to the domain of
the nonsubsampled contourlet transform (NSCT) in [44].
Another method in the contourlet domain has been pro-
posed in [84]. MAP and MMSE estimators associated to
Laplacian and Gaussian PDFs for the signal and noise com-
ponents have been proposed in [85]. Generalized I and
Gaussian distr